Zeroth Hochschild homology of preprojective algebras over the integers
نویسندگان
چکیده
منابع مشابه
Hochschild homology of preprojective algebras over the integers
We determine the Z-module structure and explicit bases for the preprojective algebra Π and all of its Hochschild (co)homology, for any non-Dynkin quiver. This answers (and generalizes) a conjecture of Hesselholt and Rains, producing new p-torsion elements in degrees 2p, l ≥ 1. We relate these elements by p-th power maps and interpret them in terms of the kernel of Verschiebung maps from noncomm...
متن کاملHochschild homology of structured algebras
We give a general method for constructing explicit and natural operations on the Hochschild complex of algebras over any PROP with A∞–multiplication—we think of such algebras as A∞–algebras “with extra structure”. As applications, we obtain an integral version of the Costello-Kontsevich-Soibelman moduli space action on the Hochschild complex of open TCFTs, the Tradler-Zeinalian action of Sulliv...
متن کاملHopf–hochschild (co)homology of Module Algebras
Our goal in this paper is to define a version of Hochschild homology and cohomology suitable for a class of algebras admitting compatible actions of bialgebras, called “module algebras” (Definition 2.1). Our motivation lies in the following problem: for an algebra A which admits a module structure over an arbitrary bialgebra B compatible with its product structure, the Hochschild or the cyclic ...
متن کاملHochschild (co)homology of exterior algebras
The minimal projective bimodule resolutions of the exterior algebras are explicitly constructed. They are applied to calculate the Hochschild (co)homology of the exterior algebras. Thus the cyclic homology of the exterior algebras can be calculated in case the underlying field is of characteristic zero. Moreover, the Hochschild cohomology rings of the exterior algebras are determined by generat...
متن کاملOn the Hochschild (co)homology of Quantum Exterior Algebras
We compute the Hochschild cohomology and homology of the algebra Λ = k〈x, y〉/(x2, xy + qyx, y2) with coefficients in 1Λψ for every degree preserving k-algebra automorphism ψ : Λ → Λ. As a result we obtain several interesting examples of the homological behavior of Λ as a bimodule.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2016
ISSN: 0001-8708
DOI: 10.1016/j.aim.2016.02.015